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Abstract
We examine the equilibrium conditions of a curve in space when a local
energy penalty is associated with its extrinsic geometrical state characterized
by its curvature and torsion. To do this we tailor the theory of deformations
to the Frenet–Serret frame of the curve. The Euler–Lagrange equations
describing equilibrium are obtained; Noether’s theorem is exploited to identify
the constants of integration of these equations as the Casimirs of the Euclidean
group in three dimensions. While this system appears not to be integrable in
general, it is in various limits of interest. Let the energy density be given as
some function of the curvature and torsion, f (κ, τ ). If f is a linear function of
either of its arguments but otherwise arbitrary, we claim that the first integral
associated with rotational invariance permits the torsion τ to be expressed as
the solution of an algebraic equation in terms of the bending curvature, κ .
The first integral associated with translational invariance can then be cast as a
quadrature for κ or for τ .

PACS numbers: 02.30.Xx, 11.10.Ef, 61.41.+e

1. Introduction

Consider a curve in space. Suppose that the curve is sufficiently smooth so that the Frenet–
Serret frame adapted to it is defined. The curvature κ and the torsion τ then provide a complete
characterization of the curve; once they are known, it can be reconstructed up to Euclidean
motions. In this paper we examine local reparametrization invariant Hamiltonians for curves
of the form

H =
∫

ds f (κ, τ ) (1)

where s denotes the arclength, and f is any scalar under reparametrizations.
Such Hamiltonians play a role both in the static and in the kinematic description of curves.

In the former, we interpret the Hamiltonian as the energy of the physical system; in particular,
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an energy of the form f = κ2 penalizing bending models the stiffness of a polymer [1, 2], and
it has been used to model the elastic properties of DNA (see, e.g., [3, 4]). When the energy
depends only on the curvature, as Bernoulli and Euler both knew, the equilibrium conditions
are integrable [5]: the torsion is always a function of κ , and κ satisfies a quadrature. Our focus
will be on the general case (1). While a linear dependence on τ , associated with a constraint
on the total torsion, has been considered [6], very little appears to be known beyond that [7].
At the very least, one is interested in a quadratic dependence on both κ and τ , the second-order
terms in a Taylor expansion of f . Such terms appear in the Hamiltonian describing chiral
polymers [8].

An additional motivation for studying these Hamiltonians is the role they play in the
connection between the motion of curves and integrable systems: the equation describing the
evolution of some function of the curvature and the torsion with respect to certain length-
preserving vector fields coincides with the nonlinear Schrödinger equation; other functions
give other known integrable equations. These curve motions appear in a number of contexts:
vortex filaments and patches in fluids [9–11], classical magnetic spin chains [12, 13], interface
dynamics [14], etc. Specific Hamiltonians of the form (1) emerge as conserved quantities
under these motions [15, 16].

Our strategy in the study of the Hamiltonians (1) will be to exploit Noether’s theorem
to identify the equilibrium conditions as conservation laws associated with the Euclidean
invariance of the energy. These conservation laws, in turn, permit us to identify first integrals
of the equilibrium conditions. Remarkably, in certain cases, these integrals can be combined to
provide a quadrature for either κ or τ . The constants of integration are the Casimir invariants
of the Euclidean group. We show that, in addition to the well-known case of a pure bending
Hamiltonian, a pure torsion Hamiltonian also leads to integrable equilibrium conditions. This
is surprising because, in contrast to the curvature which depends on two derivatives of the
embedding function for the curve, the torsion depends on three. The Euler–Lagrange equations
which result involve six derivatives; as such one would not expect them to be tractable. The
torsion is determined by a quadrature. For a polynomial f , the potential appearing in this
quadrature is a rational function. We identify other Hamiltonians with a joint dependence on
κ and τ which are reducible to a quadrature. In general, unfortunately, it does not appear to
be possible to identify a quadrature. The integrals of the motion can, however, be used to
reduce the equilibrium conditions to the motion of a fictitious particle in two dimensions. In
any case, this reduction should be helpful for studying these systems.

For most physically realistic materials the local arclength will be constant. This is
because there will be a large energy penalty associated with stretching the curve. Suppose
that an arbitrary deformation is decomposed into tangential and normal parts. The constraint
on the arclength can then be phrased in terms of the corresponding response of the tangential
deformation to its normal counterpart. However, as we will discuss below, a tangential
deformation is a reparametrization so that the corresponding change in the Hamiltonian can
always be absorbed in a divergence; as such, it cannot affect the Euler–Lagrange equations.
Thus, whether or not we decide to implement a constraint on arclength, the equations
themselves describing equilibrium are unchanged.

The paper is organized as follows. In section 2, we begin by giving a self-contained
account of the theory of deformations of a curve tailored to the Frenet–Serret frame. In
distinction to earlier work, it is not necessary to implement the constraint associated with
the locally arclength preserving deformations. We obtain directly simple expressions for the
variation of the curvature and torsion. In section 3, we analyse the consequences of the
invariance of the Hamiltonian under reparametrizations as well as under Euclidean motions.
We show how to obtain expressions for the internal forces and torques on any segment of a
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curve and their relationship with the equilibrium conditions. Systems which depend at most
on the curvature κ are the subject of section 4. This is extended to systems that depend on
the torsion τ in section 5. In section 6, systems that depend on both curvature and torsion
are considered. In section 7 we briefly consider perturbations of the equilibrium conditions.
Section 8 relates some of the results of this paper to recursion schemes that appear in the
kinematics of curves.

2. Curve deformations

In this section, we describe the geometry of embedded curves in three-dimensional space in
terms of the Frenet–Serret basis for the curve, and the effect of a small deformation of the
curve on its geometry.

Consider a curve in space described by the embedding x = X(s), where X =
(X1,X2,X3). The unit tangent to the curve is given by t = X ′, where the prime denotes
a derivative with respect to the arclength s. Clearly, the ‘acceleration’ t′ is orthogonal to t.
However, t′′ is not. The classical Frenet–Serret equations

t′ = κn1 n′
1 = −κt + τn2 n′

2 = −τn1 (2)

describe the construction of an orthonormal basis {t,n1,n2} along the curve. We choose an
orientation with n2 = t×n1. κ and τ are, respectively, the geodesic curvature and torsion. The
fundamental theorem for curves tells us that the Frenet–Serret curvatures κ and τ determine
the curve up to rigid motions [17]. The actual curve can always be reconstructed from its
curvatures. Thus, they provide a natural set of auxiliary variables. Any local geometrical scalar
defined along the curve can in principle always be expressed as a function of the curvatures
and their derivatives.

We now analyse the change in the geometry of the curve due to an infinitesimal
deformation of its embedding in space, X(s) → X(s) + δX(s). Let us first decompose
the deformation into its tangential and normal parts with respect to the basis {t,n1,n2},

δX = �‖t + �1n1 + �2n2. (3)

This is a convenient strategy when one is interested in the variation of reparametrization-
invariant geometrical quantities. Tangential deformations are reparametrizations of the curve.
We will use the following two facts: the tangential deformations of any scalar f and the
infinitesimal arclength are given by

δ‖f = �‖f ′ δ‖ ds = ds � ′
‖. (4)

Now consider the normal part of the deformation. A normal deformation of ds is

δ⊥ ds = −ds κ�1. (5)

This result implies that, for any scalar f ,

δ⊥(f ′) = κf ′�1 + (δ⊥f )′. (6)

In particular, for the three scalar functions X , this implies

δ⊥t = κ�1t + (�1n1 + �2n2)
′ . (7)

We now use the Frenet–Serret equations to cast δ⊥t as a normal vector (a unit vector and its
variation are orthogonal):

δ⊥t = (� ′
1 − τ�2)n1 + (� ′

2 + τ�1)n2. (8)

Similarly we have

δ⊥t′ = κ�1t
′ + (δ⊥t)′ (9)
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using the Frenet–Serret equations and (8) we obtain

δ⊥t′ = −κ(� ′
1 − τ�2)t + [� ′′

1 + (κ2 − τ 2)�1 − 2τ� ′
2 − τ ′�2] n1

+ (2τ� ′
1 + τ ′�1 + � ′′

2 − τ 2�2) n2. (10)

We are now in a position to evaluate the normal variations of the two Frenet–Serret
curvatures. To evaluate δ⊥κ , we take a variation of the first of (2): δ⊥t′ = (δ⊥κ)n1 + κδ⊥n1.
Dotting with n1 we obtain δ⊥κ = n1 · δ⊥t′. From (10) we read off that

δ⊥κ = � ′′
1 + (κ2 − τ 2)�1 − 2τ� ′

2 − τ ′�2. (11)

For a planar curve, τ = 0 and δ⊥κ = � ′′
1 + κ2�1. Deformations lifting the curve off the plane

do not affect the value of κ to first order in the deformation.
To evaluate δ⊥τ , we take a variation of the FS equation for n′

1 and dot with n2. We have

δ⊥τ = κn2 · δ⊥t + n2 · δ⊥n′
1. (12)

We now rewrite the second term on the right-hand side as

n2 · δ⊥n′
1 = κ�1(n2 · n′

1) + n2 · (δ⊥n1)
′

= κτ�1 + (n2 · δ⊥n1)
′

= κτ�1 +

[
1

κ
n2 · δ⊥t′

]′
(13)

where we have applied (6) to n′
1, and used the FS equations for both n′

1 and n′
2. Substituting

for n2 · δ⊥t and n2 · δ⊥t′, we obtain

δ⊥τ = κ(� ′
2 + 2τ�1) +

{
1

κ
[2τ� ′

1 + τ ′�1 + � ′′
2 − τ 2�2]

}′
. (14)

For an initially planar curve, δ⊥τ = κ� ′
2 + (� ′′

2 /κ)′. Only the deformation along the direction
normal to the plane contributes. Suppose that δ⊥τ = 0, then the equation κ� ′

2 + (� ′′
2 /κ)′ = 0

should not admit any solutions other than those which correspond to an Euclidean motion
of the planar curve. To show this we note that, for a planar curve, κ = �′, where � is the
angle which the tangent makes with, say, the x-axis. Then this equation can be recast as
∂2
�� ′

2 +� ′
2 = 0, with independent solutions, �2 = sin �, cos � and �2 a constant—a rotation

about x, y and a translation. If δ⊥τ is constant, the only solution is the helix �2 ∝ � generated
by the planar curve.

For completeness, let us note that the normals vary according to

δ⊥n1 = −(� ′
1 − τ�2)t +

1

κ
(� ′′

2 − τ 2�2 + 2τ� ′
1 + τ ′�1)n2 (15)

δ⊥n2 = −(� ′
2 + τ�1)t − 1

κ
(� ′′

2 − τ 2�2 + 2τ� ′
1 + τ ′�1)n1. (16)

So far we have considered arbitrary deformations of the curve. There are special
deformations that will be of interest in the following. In particular, a deformation Y = δX
preserves locally the arclength if δY ds = 0. In terms of the components this translates to

t · Y ′ = Y ′
‖ − κY1 = 0 (17)

which implies that there exists a (non-unique) vector Z such that

t × Z = Y ′. (18)

This is the starting point of the filament model recursion scheme [16], where a family of locally
arclength preserving vector fields {Y (n)} is defined by t × Y (n) = Y ′

(n−1), with Y (0) = −t.
We will have something to say about this in section 8.

Let us also note that if (δ⊥X)′ · ni = 0, or in components, � ′
1 − τ�2 = 0 and � ′

2 +
τ�1 = 0, then δ⊥ni = 0 and δ⊥t = 0; the Frenet–Serret basis is left unchanged by this type
of deformation.
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3. Invariance and symmetry

The Hamiltonian H for the curve depends locally on the geometry, and it possesses various
symmetries, both local and global. The local symmetry is reparametrization invariant, and it
restricts severely the form of H. The global symmetries are Euclidean motions: translations
and rotations. They give rise to conservation laws.

3.1. Reparametrization invariance

The Hamiltonian H is, in general, a sum of terms, H = H1 + H2 + · · ·, each of which is
invariant under reparametrizations of the curve. This results in the form

H =
∫

ds f (κ, τ, κ ′, τ ′, . . .) (19)

where f is a scalar under reparametrizations, constructed out of the geometrical quantities
that characterize the curve: the two curvatures and their derivatives. The lowest order (in
derivatives of the embedding functions) non-trivial geometrical model depends only on the
scalar κ . A simple model that penalizes bending of the curve is f1 = t′ · t′ = κ2. At the next
order, a dependence on τ as well as κ ′ is admitted. A term in f of the form τ 2 penalizes the
torsion of the curve; one of the form (κ ′)2 is a higher-order differential bending energy and
will not be considered. We note that the natural Hamiltonians f2 ≡ n′

1 · n′
1 and f3 ≡ n′

2 · n′
2

are given by f2 = κ2 +τ 2 and τ 2. While f1 has been considered in considerable detail [18, 19],
neither f2 nor f3 appears to have been considered.

The assumption that f is a scalar under reparametrizations implies that the first variation
of the energy can always be written as

δH =
∫

ds E i�i +
∫

ds Q′ (20)

where Ei denotes the normal projection of the Euler–Lagrange derivative of f , and Q is the
Noether charge (i, j,= 1, 2). The specific form of the first term follows from the fact that the
tangential variation contributes only in a divergence. Indeed, using (4), the tangential part of
the variation of the energy is always a total derivative

δ‖H =
∫

ds(f �‖)′. (21)

This implies that the Noether charge Q, as a linear differential operator which operates on the
deformation δX , is of the form

Q = f�‖ + Q(0)
i�i + Q(1)

i� ′
i + · · · (22)

where, to construct the Q(n)
i , we use integration by parts to collect in a total derivative the

normal deformations �i and their derivatives.

3.2. Translational invariance

The Hamiltonian H is also invariant under the rigid Euclidean motions: translations and
rotations. Noether’s theorem can then be exploited to determine the conditions of static
equilibrium. Under an infinitesimal constant translation, δX = e, the energy associated with
H stored on the segment AB (labelled by its endpoints) changes by an amount

δHAB = e ·
∫ B

A

ds[E ini − F ′]. (23)
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Here we introduce the spatial vector F with

Q = −e · F (24)

and it is constructed by specializing equation (22) to the case of a constant deformation.
With no external forces acting so that Ei = 0, we may identify F as the internal force

pulling or pushing at a point on the curve segment. (With our conventions, F is the
force from the part with lower to the one with higher value of s.) In general, this force
will not be tangential. Translational invariance implies δHAB = 0. Because the endpoints A

and B are arbitrary we deduce the local balance of forces

E ini − F ′ = 0. (25)

In equilibrium, this implies the conservation law, F ′ = 0, i.e. F is a constant vector along the
curve. We thus associate a spatial vector with each curve, be it open or closed. The squared
magnitude of this vector, F 2, is the first Casimir of the Euclidean group. The direction along
which F points is often indicated by the symmetry of the configuration.

We have come up with three equations of static equilibrium, whereas we only possess two
independent Euler–Lagrange equations. One of the former must therefore be a kinematical
statement, or Bianchi identity, associated with the reparametrization invariance of H. Let us
examine the three independent projections of the equilibrium conditions (25): we decompose
F into parts tangential and normal to the curve,

F = F‖t + F1n1 + F2n2. (26)

Then equation (25) is equivalent to the three equations

F ′
‖ − κF1 = 0 F ′

1 + κF‖ − τF2 = E1 F ′
2 + τF1 = E2. (27)

Comparison with (17) shows that F , seen as a deformation of the curve, preserves locally
arclength, as expected. The first condition is independent of the Euler–Lagrange equations. It
is the promised Bianchi identity associated with the reparametrization invariance of H. Note
that these equations could also have been derived directly by considering the balance of forces,
as in [20].

There is a non-trivial integrability condition on closed curves associated with the
conservation law (25). Taking its projection onto X in equilibrium, we can immediately
deduce that ∮

dsF‖ = 0 (28)

on any closed loop. We will comment on its geometrical origin in section 3.4.

3.3. Rotational invariance

Under an infinitesimal rotation δX = Ω × X , we have that the energy H on a segment AB

of the curve changes by

δHAB = Ω ·
∫ B

A

ds[E ini × X − M ′] (29)

where the spatial vector M is defined by

Q = −Ω · M (30)

and it is obtained from equation (22) by specializing it to the case of a constant rotation. We
identify M as the torque with respect to the origin acting at a point on the curve segment.
Rotational invariance of HAB implies

M ′ = E ini × X. (31)
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We decompose M into the sum of the couple of F about the origin, plus an intrinsic,
translationally invariant part,

M = X × F + T . (32)

Then the differential torque T satisfies

T ′ = F × t. (33)

We emphasize that this equation does not depend on whether the curve is in equilibrium or
not. While M is conserved in equilibrium, neither X × F nor T is. It is clear, however, that
the projection of T onto F , the second Casimir of the Euclidean group, is conserved

J = T · F̂ (34)

where F̂ = F /F , and for future convenience, we choose to fold |F | into the definition.
As we did earlier for F , we can also decompose T into parts tangential and normal to the

curve,

T = T‖t + T1n1 + T2n2. (35)

Then equation (33) is equivalent to

T ′
‖ − κT1 = 0 T ′

1 − τT2 + κT‖ = F2 T ′
2 + τT1 = −F1 (36)

where we use the convention t · n1 × n2 = 1. The first equation, as was the case for F in
equation (28), is also valid off-shell, and it says that T , seen as a deformation of the curve
preserves locally arclength.

If a curve is deformed along T , i.e. δX = T , we find that the corresponding variations
of the curvature and torsion satisfy

δT κ = E2 δT τ = −
(
E1

κ

)′
. (37)

Therefore, in equilibrium, not only deformations along F ,M correspond to rigid motions
which leave the geometry unchanged, as expected, but also deformations along T .

3.4. Adapted cylindrical coordinates

The two conserved vectors F and M together single out a cylindrical polar coordinate system
{ρ, θ, z} [18, 21, 22]. Suppose F �= 0. We align our coordinate system such that F̂ points
along the positive z-direction. We next perform a translation orthogonal to F so that M̂ is
rotated into F̂ . Then we have that

T = J F̂ + F × X. (38)

Alternatively, we can arrive at this expression by integrating equation (33),∫
ds T ′ =

∫
ds(F × X)′ −

∫
ds F ′ × t (39)

and noting that at equilibrium the second term vanishes, so that T and F × X differ by a
constant vector. Then contraction with F̂ reproduces equation (38), up to a constant translation.

The modulus

T 2 = J 2 + ρ2F 2 (40)

determines the cylindrical radius in the adapted system in terms of T 2 and the two Casimirs.
Typically, T 2 will be some function of κ and τ and their derivatives. To complete the
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construction, we describe the tangent vector in these coordinates, t = (ρ ′, θ ′, z′). Thus, the
projection t · F̂ determines z as a quadrature

z′ = F‖
F

. (41)

This provides the promised geometrical interpretation of the global conservation law (28).
Similarly, the projection t · T̂ determines θ as a quadrature,

Fρ2θ ′ = Jz′ − T‖. (42)

Expressions (40)–(42) are related by the normalization condition ρ ′2 + ρ2θ ′2 + z′2 = 1. This
is not immediately apparent. It can be shown by taking a derivative of equation (40) and
squaring, together with the squares of equations (41), (42), as long as ρ does not vanish.

4. Bending

Let us consider an Hamiltonian that depends at most on the curvature,

H =
∫

ds f (κ)

where f is any local function of its argument. We find that under an arbitrary deformation of
the curve we have, with fκ = ∂f/∂κ ,

δH =
∫

ds{fκδ⊥κ − f κ�1} +
∫

ds(f �‖)′

=
∫

ds[f ′′
κ + (κ2 − τ 2)fκ − κf ]�1 +

∫
ds[(2τfκ)

′ − fκτ
′]�2

+
∫

ds[fκ�
′
1 − f ′

κ�1 + f �‖ − 2τfκ�2]′ (43)

where we have used expression (11) for δ⊥κ . By comparison with equation (20), we
immediately read off the Euler–Lagrange equations Ei = 0, where

E1 = f ′′
κ + (κ2 − τ 2)fκ − κf (44)

E2 = (2τfκ)
′ − τ ′fκ . (45)

We see that τ contributes to the ‘driving force’ for κ in the first equation. Integrating the
second gives

f 2
κ τ = constant (46)

which determines τ as a function of κ . We show below that the constant appearing here is J as
defined by equation (34). We can substitute into equation (44) for τ to obtain a second-order
differential equation for κ . It is clear that the Euler–Lagrange equations (44) and (45) are
integrable; τ is given as a function of κ, κ is determined as a quadrature.

The Noether charge Q is identified as the divergence appearing in equation (43),

Q = f�‖ + fκ�
′
1 − f ′

κ�1 − 2τfκ�2. (47)

The conserved force F is obtained by specializing the deformation to a constant infinitesimal
translation δX = e in this expression. In the second term, we use the Frenet–Serret equation
to obtain � ′

1 = e · n′
1 = e · (−κt + τn2). Equation (47) then gives

F = (fκκ − f )t + f ′
κn1 + τfκn2. (48)

Note that the tension in the curve is identified as −F‖ = f −fκκ . It is not constant, in general,
along the curve, and may also take negative values.
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In a similar way, from the Noether charge corresponding to a rotation δX = Ω × X we
obtain the conserved torque, M . In general, only terms with derivatives of the �i contribute
to the differential torque T . In this case we have � ′

1 = (Ω × X · n1)
′ = Ω · (X × n1)

′ =
Ω · (t × n1 + X × n′

1). The second term contributes to the orbital part of M , while from the
first we find that the differential torque is given by

T = −fκt × n1 = −fκn2. (49)

Note that while the torque due to bending, M , is not generally of the simple form F × X
unless fκ = 0, i.e. f is constant, neither is T of the most general form: there is no component
along either t or n1 if only bending is penalized. This accords with our intuition: the axis of
rotation due to the bending which rotates t towards n1 is along n2. For this model, the second
Casimir of the Euclidean group, J , given by equation (34), is read off by dotting equations
(48) and (49) as

FJ = −fκ
2τ. (50)

We thus identify the constant appearing in equation (46) as −FJ .
Substituting equation (50) for τ into the magnitude of the force determines κ as a

quadrature, involving the two constants F and J :

F 2 = (f ′
κ )

2 + (fκκ − f )2 +
F 2J 2

(fκ)2
. (51)

Suppose fκ is not constant. The quadrature (51) describes the radial motion (fκ) of a fictitious
particle with a mass = 2, positive energy F 2 and angular momentum FJ , moving in the
central potential, V (κ) = (fκκ − f )2. We note that this potential is bounded from below.
Equation (51) can be integrated to determine κ implicitly as a function of s:

s =
∫

dfκ[
F 2 − V (fκ) − F 2J 2/fκ

2
]1/2 . (52)

Once κ , and therefore τ via equation (50), is known, one can use expressions (40)–(42) to
obtain by a further quadrature the trajectory in the adapted cylindrical coordinates {ρ, θ, z}. In
particular, we note that from equation (40) it follows that the radial coordinate ρ is determined
pointwise by the curvature κ .

The physically most relevant model is the one quadratic in κ , subject to the constraint that
the total length is constant [18]:

H =
∫

ds(κ2 + µ) (53)

where µ is a Lagrange multiplier enforcing the constraint. We have f (κ) = κ2 + µ, and
equation (51) reduces to

F 2 = 4(κ ′)2 + (κ2 − µ)2 +
F 2J 2

4κ2
(54)

where we have used FJ = −4κ2τ . The potential becomes quartic for large κ . If J vanishes,
τ = 0, and the problem reduces to that of a planar elastica. There is one circular solution
labelled by the winding number n = ±1,±2, . . . , corresponding to an n-fold covering of the
circle, with κ2 = µ. µ is then fixed by L and n. The vector F vanishes on these solutions
whereas T does not, pointing out of the plane. The doubly degenerate ground states are the
once covered circles with n = ±1.
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For n = 0, there are two oppositely oriented figure-eight configurations. There are two
inflection points where κ = 0, connecting equal positive and negative curvature lobes. The
integrability condition, equation (28), implies∫

ds κ2 = µL (55)

where L is the total length of the loop—this fixes µ to be positive.
Consider next the model described by (see, e.g., [2])

H =
∫

ds(κ − κ0)
2 (56)

where κ0 is some positive constant, the ‘spontaneous’ curvature (note that we do not include
a constant length constraint in this case). The absolute minimum, H = 0, is obtained when
κ = κ0, which corresponds to an n-fold circular loop of radius R0 = κ−1

0 , with n arbitrary.
The ground state is therefore infinitely degenerate. In this model we have,

F 2 = 4(κ ′)2 +
(
κ2 − κ2

0

)2
+

F 2J 2

4(κ − κ0)2
. (57)

If J = 0, τ vanishes as well, and the potential possesses a single minimum at κ = κ0. The
only equilibria with J = 0 as before are the circles and figure eight. If J �= 0, the potential is
quite different from the one considered earlier: it now diverges at κ = κ0. On either side of
κ0, it develops a local miminum. As before, the integrability condition can be used to exclude
constant κ closed loops. Since F‖ = κ2 − κ2

0 , the integrability condition then implies that
κ = κ0 if it is constant.

We end this section with a brief description of the model described by the scale-invariant
bending energy with f = κ . In this case, equation (44) implies τ = 0. We also have
F = 0 = J . Any plane loop extremizes this bending energy, which (for positive κ) coincides
with the winding number of the loop on this plane. The minimum is realized on any convex
loop.

5. Torsion

We now turn to Hamiltonians of the form

H =
∫

ds f (τ ) (58)

where f is an arbitrary local function of its argument. We will see that, like in the case
H = ∫

ds f (κ) discussed in the previous section, such models are integrable by quadratures.
We will require for the remainder of this section that neither κ or τ vanish.

We determine the normal variation of the free energy (fτ = ∂f/∂τ):

δ⊥H |1 =
∫

ds

[
2
τ

κ
f ′′

τ +
τ ′

κ
f ′

τ − 2
τκ ′

κ2
f ′

τ − f κ + 2κτfτ

]
�1

+
∫

ds

[
2
τ

κ
fτ �

′
1 +

τ ′

κ
fτ �1 − 2

τ

κ
f ′

τ �1

]′
(59)

δ⊥H |2 =
∫

ds

[
−

(
f ′

τ

κ

)′′
+

τ 2f ′
τ

κ
− (κfτ )

′
]

�2

+
∫

ds

[
fτ

κ
� ′′

2 − f ′
τ

κ
� ′

2 + (κ2 − τ 2)
fτ

κ
�2 +

(
f ′

τ

κ

)′
�2

]′
(60)



Hamiltonians for curves 6581

where we have used equations (5), (14). The Euler–Lagrange derivatives Ei along the normal
directions are identified as the coefficients of the �i discarding total derivatives

E1 = 2τ

(
f ′

τ

κ

)′
+

τ ′

κ
f ′

τ − κf + 2κτfτ (61)

E2 = −
(

f ′
τ

κ

)′′
+

τ 2f ′
τ

κ
− (κfτ )

′. (62)

As expected, the Euler–Lagrange equations are of order 3 in derivatives of τ , and therefore of
sixth order in derivatives of the embedding functions.

The Noether charge is given by the total derivatives in (59), (60),

Q = f �‖ + 2
τ

κ
fτ�

′
1 −

[
2
τ

κ
f ′

τ − τ ′

κ
fτ

]
�1 +

(
fτ

κ

)
� ′′

2 − f ′
τ

κ
� ′

2

+

[(
f ′

τ

κ

)′
+

(
fτ

κ

)
(κ2 + τ 2)

]
�2. (63)

This permits us to write the constant force as

F = (τfτ − f )t +
τ

κ
f ′

τn1 −
[(

f ′
τ

κ

)′
+ κfτ

]
n2. (64)

We note that the structure of the tangential component is identical to the one of F for bending
in equation (48), with τ ↔ κ . Moreover, the second derivative of τ appearing in F2 can be
lowered to a first derivative by exploiting the Euler–Lagrange equation E1 = 0. Note that this
was not necessary in first curvature models. We have(

f ′
τ

κ

)′
+ κfτ = 1

2τ

[
κf − τ ′

(
f ′

τ

κ

)]
(65)

so that we have the alternative expression:

F = (τfτ − f )t +
τ

κ
f ′

τn1 − 1

2τ

[
κf − τ ′ f

′
τ

κ

]
n2. (66)

The differential torque T is given by

T = −fτ t − f ′
τ

κ
n1. (67)

Note that in addition to the expected tangential component −fτ t due to the twist about the
‘rod’ axis (see, e.g., [21]), there is a contribution due to differential twist along n1. There is,
however, no n2 component. The second Casimir, as defined by equation (34), takes the form

FJ = fτ (f − τfτ ) − τ

(
f ′

τ

κ

)2

. (68)

Remarkably, the solution by quadratures is possible exactly as in the first curvature models,
as we show now for a special case which is sufficient for our purposes,

f = τ 2/2 + µ. (69)

From equation (66) we obtain immediately

F 2 = κ2

4τ 2

[(
τ ′

κ

)2

− τ 2

2
− µ

]2

+
(τ 2 − 2µ)2

4
+ τ 2

(
τ ′

κ

)2

. (70)
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Moreover, from equation (68), we obtain

FJ = 1

2
τ (2µ − τ 2) − τ

(
τ ′

κ

)2

(71)

which permits us to eliminate τ ′/k from equation (70). Doing this, we get

τ 4(τ 4 − 4µ2) + κ2(τ 3 + FJ )2 + 4FJτ 5 + 4F 2τ 4 = 0. (72)

Thus, τ is determined in terms of J, F and κ as a root of an eighth-order polynomial. It is
rather surprising that τ is determined pointwise, just as in the pure bending case, as some
function of κ .

If we insist on adhering to the same mechanical analogue of a non-relativistic particle
with radial κ exploited for bending, the potential appearing in the quadrature is going to be a
mess. Fortunately, it is also possible to set up a quadrature for τ . We solve equation (72) for
κ as a function of τ ,

κ2 = 4τ 4 F 2 − µ2 + τFJ + 1
4τ 4

(FJ + τ 3)2
(73)

and substitute into equation (71). We obtain an equation of the form

τ ′2 + V (τ, F, J,µ) = 0 (74)

where the potential is given by

V (τ, F, J,µ) = 4τ 3

(
F 2 − µ2 + τFJ + 1

4τ 4
) (

µτ − FJ − 1
2τ 3

)
(FJ + τ 3)2

(75)

which again describes a non-relativistic particle (this time with position τ and zero ‘energy’)
moving in a potential which is a ratio of polynomials. The analysis of the equilibrium
configurations for this model is beyond the scope of this paper. We note that the potential
tends asymptotically to τ 4/2—a quartic once again. Note that the integrability condition∫

ds(τ 2 − 2µ) = 0 (76)

implies that µ must be positive on a closed loop.

6. Bending and torsion

Let us now consider models with a joint dependence on κ and τ, f = f (κ, τ ). The integrability
exhibited by the cases considered so far does not persist, in general, when f depends on both
κ and τ . Unfortunately, this is also the case of interest in biophysics where, for example,
models of the type f = ακ2 + βτ 2 are studied.

The Euler–Lagrange equations take the form

E1 = 0 = f ′′
κ + (κ2 − τ 2)fκ − κf + 2τ

(
f ′

τ

κ

)′
+ τ ′ f

′
τ

κ
+ 2κτ fτ (77)

E2 = 0 = 2(τfκ)
′ − τ ′fκ −

(
f ′

τ

κ

)′′
+ τ 2 f ′

τ

κ
− (κfτ )

′. (78)

Note that one has to be careful to include only once the term −κf in adding equations (44)
and (61) to obtain E1. The force and the differential torque are

F = (fτ τ + fκκ − f )t +
1

κ
(κf ′

κ + τf ′
τ )n1 −

[(
f ′

τ

κ

)′
+ κfτ − τfκ

]
n2 (79)

T = −
[
fτ t +

f ′
τ

κ
n1 + fκn2

]
. (80)
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The force is obtained by adding equations (48), (64), taking care to include the term −f t only
once. The differential torque is given by the sum of equations (49) and (67). Note that T has
components along all directions. It follows that the second Casimir is

FJ = −fτ (fτ τ + fκκ − f ) − f ′
τ

κ2
(f ′

κκ + f ′
τ τ ) + fκ

[(
f ′

τ

κ

)′
+ κfτ − τfκ

]
. (81)

By comparing this expression for FJ with the corresponding one for the model depending only
on τ , it is clear that the same strategy used in section 5 to produce a quadrature will not work.
There are, however, two interesting mixed cases that are tractable by quadratures.

The first possibility is to consider the bending energy constrained to a fixed length and
torsion (see [6] for a detailed analysis of this model). Thus, we consider the model defined by

f = 1
2κ2 + ατ + µ. (82)

The total torsion, T = ∫
ds τ , is dimensionless. The fact that makes this model a minimal

variation with respect to the pure bending models of section 4 is that it does not introduce
derivatives of τ in the equilibrium conditions. The force and the differential torque are
given by

F = 1
2 (κ2 − 2µ)t + κ ′n1 + κ(τ − α)n2 (83)

T = −αt − κn2. (84)

We have then that the second Casimir is

FJ = αµ +
κ2

2
(α − 2τ ). (85)

This invariant can be inverted for τ as

τ = 1

κ2
(αµ − FJ ) +

α

2
. (86)

The corresponding quadrature then takes the form

κ ′2 +
1

4
(κ2 − 2µ)2 +

1

4κ2

(
αµ − FJ +

1

2
κ2

)2

= F 2. (87)

Note that the torsion constraint does not affect the integrability condition (28) on F‖, although
it affects the form of the coordinates ρ, θ as defined in section 3.4.

The second possibility is given by adding a term linear in κ to the model (69), so that

f = 1
2τ 2 + ακ + µ. (88)

The two Casimirs now take the form

F 2 = κ2

4τ 2

[(
τ ′

κ

)2

− τ 2

2
− µ + α

τ 2

κ

]2

+
(τ 2 − 2µ)2

4
+ τ 2

(
τ ′

κ

)2

(89)

FJ = 1

2
τ (2µ − τ 2) −

(
τ +

ακ

2τ

) (
τ ′

κ

)2

+
ακ

2τ

(
µ +

τ 2

2
− ατ 2

κ

)
. (90)

Note that the latter is considerably more complicated than in the pure torsion case, as is given
by equation (71). It is possible to use FJ to eliminate τ ′/κ in F 2, so that τ is determined by
κ pointwise. However, the resulting expression is quite messy.

Although it is clear that the general case will not be reducible to a quadrature, the use
of the Casimirs of the Euclidean group allows for significant simplifications over a direct



6584 R Capovilla et al

approach at the level of the equilibrium conditions. We illustrate this fact with an example:
let us look at the model

f = 1
2 (κ2 + τ 2). (91)

This is known as total curvature [23], and it is a natural function of curvature and torsion, in
the sense that n′

1 · n′
1 = κ2 + τ 2. It also appears in [24] as a conserved Hamiltonian. From

equations (77), (78), we read off the equilibrium conditions

E1 = 2τ

(
τ ′

κ

)′
+

τ ′2

κ
+ κ ′′ +

κ

2
(κ2 − τ 2) = 0 (92)

E2 = −
(

τ ′

κ

)′′
+

τ ′τ 2

κ
+ τκ ′ = 0. (93)

For the force and differential torque, from equations (79), (80), we obtain

F = 1

2
(κ2 + τ 2)t +

1

2κ
(κ2 + τ 2)′n1 −

(
τ ′

κ

)′
n2 (94)

T = −
(
τt +

τ ′

κ
n1 + κn2

)
. (95)

It follows that the Casimir invariants take the form

F 2 =
[(

τ ′

κ

)′]2

+
1

4κ2
[(κ2 + τ 2)′]2 +

1

4
(κ2 + τ 2)2

FJ = κ

(
τ ′

κ

)′
− τ ′

2κ2
(κ2 + τ 2)′ − τ

2
(κ2 + τ 2). (96)

We can eliminate the second derivative in F 2 using the definition of J to provide a condition
of the form

F(κ, κ ′, τ, τ ′, F, J ) = 0 (97)

which can be considered as the energy condition for the motion of a fictitious particle in two
dimensions.

7. A note on perturbations

We have, so far, focused on exact methods in dealing with the Euler–Lagrange equations for the
elastic models we consider. We digress briefly in this section to comment on the perturbative
analysis of these equations—a more expanded treatment of this material will be presented
elsewhere [25]. Although outside the main focus of this paper, we find it instructive to include
here an example of a complementary approach which, through approximations, allows a
complete treatment, from the energy functional to the actual embedding that minimizes it.
Apart from the obvious benefit to intuition, we obtain a non-trivial check of many of our
formulae by computing the force F and the Casimir FJ and verifying that they are constant.
We do this in the particular case

f = κ2 + τ 2 + µ2 (98)

i.e., when the total curvature is penalized, with constrained length.
Using equations (77), (78), the equilibrium conditions can be satisfied, with f as above,

by constant (non-zero) curvature and torsion, κ = κ0, τ = τ0, provided that

κ2
0 + τ 2

0 = µ2 (99)
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(note that E2 is identically zero for constant curvature and torsion). The resulting space curve
is a circular helix. Perturbations would give to the axis of this helix a small curvature and
torsion, while changing, in general, κ0 and τ0 as well. We then take κ and τ to be power series
in a small parameter ε (related to the above ‘macroscopic’ curvature and torsion of the axis
of the helix) and read off the resulting Euler–Lagrange equations order-by-order in ε. The
zeroth-order result is equation (99) above, while to order ε we get

κ ′′
1 + 2τ0τ

′′
1 + κ1 + τ0τ1 = 0 τ ′′′

1 − τ0κ
′
1 − τ 2

0 τ ′
1 = 0 (100)

where

κ(s) = κ0 + εκ1(s) + O(ε2) τ (s) = τ0 + ετ1(s) + O(ε2) (101)

and we have set κ0 = 1. The solutions to (100) involve constant terms, sines and cosines,
as well as terms proportional to s and s2. To reduce the number of parameters (five initial
conditions as well as µ), we choose to eliminate the terms in s and s2, resulting in the
constraints

κ ′
1(0) = (2µ2 − 1)τ−1

0 τ ′
1(0) τ ′′

1 (0) = τ0(κ1(0) + τ0τ1(0)). (102)

This amounts to a restriction to periodic solutions, with period equal to that of the unperturbed
helix. The following abbreviations will be useful in this section

α1 ≡ µ−2(τ0κ1(0) + α2τ1(0)) α2 ≡ 2µ2 − 1 α3 ≡ µ−2(κ1(0) + τ0τ1(0)).

We may furthermore set τ ′
1(0) = 0 by a suitable shift in s. The solutions then become

κ1(s) = −α1τ0 + α2α3 cos(µs) τ1(s) = α1 − α3τ0 cos(µs). (103)

We now determine the corresponding embedding, using the Weierstrass representation for the
curve (we follow the conventions in [16]). We first solve the differential equation

�′(s) = Q(s)�(s) (104)

where �(s) is the SU(2) matrix describing the rotation of the Frenet–Serret frame and

Q(s) = −τ (s)e0 − κ(s)e2 (105)

with e0 = − i
2σ 3, e1 = − i

2σ 1, e2 = − i
2σ 2 and σ i the Pauli matrices. The embedding is then

given by

x̃(s) + iỹ(s) =
∫ s

0
2αβ̄ ds′ z̃(s) =

∫ s

0
(αᾱ − ββ̄) ds′ (106)

where α = �11 and β = �12. This gives us the helix with its tangent vector, at s = 0,
along ẑ. To get instead its axis, at s = 0, along ẑ, we rotate around the x-axis by an angle η,
with tan η = τ0/κ0. Denoting the resulting embedding by (x, y, z), we find

x(s) = −µ−2 cos(µs) + ε
(
µ−2τ0α1(cos(µs) − 1) − 1

4α3(cos(2µs) − 1) + 1
2τ 2

0 α3s
2)

y(s) = −µ−2 sin(µs) + ε
(
µ−2τ0α1 sin(µs) − 1

4α3 sin(2µs) +
(

1
2µα3 − µ−1τ0α1

)
s
)

z(s) = µ−1τ0s + ε
(
µ−2(α1 + τ0α3) sin(µs) + µ−1τ0α3s cos(µs) + µ−1α1s

)
. (107)

We note that the axis of the helix is bent in the x–z plane due to the s2 term in x(s), while
the term linear in s in y(s) gives it torsion as well. As a check of our general formulae in the
previous sections, as well as of our explicit calculations in this section, we compute now t,n1

and n2 and then the force F from (79). We find

F = −2εµ3α3y (108)

showing that the (indeed constant) force only appears as a result of the perturbation, an
exclusive feature of this particular model. Finally, equation (81) gives that FJ is zero to this
order in ε, FJ = 0 + O(ε2).
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A final remark is due concerning the validity of the above first-order solution. When
moving on to second order, the solutions for κ2, τ2, will again involve periodic as well as
non-periodic terms. Eliminating the latter fixes some of the parameters that are arbitrary in the
first-order results. More generally, requiring periodicity at order k, restricts the solutions found
to orders less than k, a feature that can be traced to the nonlinearity of the Euler–Lagrange
equations.

8. Filament model recursion scheme

In this section, we discuss briefly the filament model recursion scheme, and its relationship
with the Noether currents for curves. It is described in great detail by Langer in [16], and our
brief discussion is contained in his work. We are only changing the point of view by putting
Hamiltonians to the forefront, rather than curve motions.

As we mentioned briefly at the end of section 2, consider spatial vector fields Y which
locally preserve arclength, then the filament model recursion scheme is defined by

t × Y (n) = Y ′
(n−1) with Y (0) = −t. (109)

The first few terms in this hierarchy are

Y (1) = κn2

Y (2) = κ2

2
t + κ ′n1 + κτn2

Y (3) = κ2τt + (2τκ ′ + κτ ′)n1 +

(
κτ 2 − κ ′′ − κ3

2

)
n2.

These vector fields have remarkable properties. First, we recognize that Y (1), known as the
filament model, is the differential torque T for the model f = 1

2κ2, and Y (2) is both the force
F for the same model and also the differential torque for the model f = κ2τ . Moreover,
the integral of the tangential component of the nth order vector field gives the corresponding
conserved Hamiltonian.

Now, is it possible to set up alternative recursion schemes? From the point of view of the
Hamiltonians, one can start with some H = ∫

ds f (κ, τ ), compute its differential torque T
set as T = Z(1). Then from equation (33) it follows that the associated force is F = Z(2).
Now from the equilibrium conditions in the form (25), we have E ini = t × Z(3), so that
Z(3) = Z(3)‖t + E2n1 − E1n2. However, to satisfy the condition that the vector be arclength
preserving, we need to satisfy Z′

‖ −κE2 = 0, and this ‘perfect derivative phenomenon’ appears
to happen only in the filament model recursion scheme. For example, for the model quadratic
in τ, κE2 is not a total derivative.
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